63 research outputs found

    Presynaptic release-regulating mGlu1 receptors in central nervous system

    Get PDF
    Group I metabotropic glutamate (mGlu) receptors consists of mGlu1 and mGlu5 receptor subtypes. These receptors are widely distributed in the central nervous system (CNS), where they preferentially mediate facilitatory signaling in neurones and glial cells, mainly by favoring phospholipase (PLC) translocation. Based on the literature so far available, group I Metabotropic glutamate receptors (mGluRs) are preferentially expressed at the postsynaptic side of chemical synapsis, where they participate in the progression of the chemical stimulus. Studies, however, have shown the presence of these receptors also at the presynaptic level, where they exert several functions, including the modulation of transmitter exocytosis. Presynaptic Group I mGluRs can be both autoreceptors regulating release of glutamate and heteroreceptors regulating the release of various transmitters, including GABA, dopamine, noradrenaline, and acetylcholine. While the existence of presynaptic release-regulating mGlu5 receptors is largely recognized, the possibility that mGlu1 receptors also are present at this level has been a matter of discussion for a long time. A large body of evidence published in the last decade, however, supports this notion. This review aims at revisiting the data from in vitro studies concerning the existence and the role of release-regulating mGlu1 receptors presynaptically located in nerve terminals isolated from selected regions of the CNS. The functional interaction linking mGlu5 and mGlu1 receptor subtypes at nerve terminals and their relative contributions as modulators of central transmission will also be discussed. We apologize in advance for omission in our coverage of the existing literature

    Characterization data of water-soluble hydrophilic and amphiphilic dendrimers prodrugs for delivering bioactive chemical entities otherwise non soluble.

    Get PDF
    More than 40% of bioactive chemical entities (BCEs) developed in pharmaceutical industry are almost water-insoluble, poorly orally bioavailable and/or not via parenteral administrable, and this strongly limits their clinical applications. Drug Delivery (DD) is an engineered technology dealing with the development of delivery systems (DDSs) able to solubilize, transport, target release and maintain therapeutic drugs concentration where needed for long periods. DD frequently makes use of nanosized carriers, often positive charged, including dendrimer such as commercially available and strongly cationic PAMAM and PEI. Nowadays, uncharged dendrimer scaffolds modified with amino acids-modified in their cationic form, are preferred because a more controlled number of nitrogen atoms causes less damage to cells. Then, two hydrophilic (1, 2) [1] (Fig. 1) and three amphiphilic (3-5) [2] (Fig. 2) water-soluble dendrimers were prepared and completely characterized. Once established through proper routine investigations, that these materials could work well as DDSs, they have been used to physically entrap two completely insoluble BCEs i.e. the thiocarbamate (O-TC) 6 [3] and Ellagic Acid (EA) 7 (Fig. 3) with the aim at improving their solubility and in parallel at protecting them from early degradation, at promoting their fast cellular up-take and thus reducing eventual systemic toxicity. Without resorting to toxic excipients and harmful solubilizing agents often used despite the resulting unpleasant side effects, five structurally different nanodispersions (DPXs) loaded with 6 [4] and two with 7 [5] were achieved and completely characterized to confirm their structure and to evaluate their potentiality in biomedical applications

    Non-PAMAM amino acids-modified dendrimers nanoparticles for enhancing water-solubility of insoluble bioactive molecules: our state of the art

    Get PDF
    Non-PAMAM amino acids-modified dendrimers nanoparticles for enhancing water-solubility of insoluble bioactive molecules: our state of the art Silvana Alfei,* Andrea Spallarossa, Silvia Catena, Federica Turrini, Guendalina Zuccari, Anna Pittaluga, Raffaella Boggia Dipartimento di Farmacia, Universit\ue0 di Genova, Viale Cembrano 4, I-16148 Genova, Italy E-mail: [email protected] ABSTRACT Water-solubility is essential for GIT absorbability or parenteral administration of drugs, therefore it is a key parameter to achieve the systemic drug concentration necessary for an effective therapeutic activity. Unfortunately, low aqueous solubility is the major problem with bioactive chemical entities (BCEs), in fact, more than 40% BCEs developed in pharmaceutical industry are practically water-insoluble. As a consequence, great are the research efforts focused on the development of new techniques aiming at enhancing it. Toxic excipients and harmful solubilizing agents were also extensively used for solubilizing and delivering non water-soluble drugs, despite the resulting unpleasant side effects complained of by patients. Nowadays, safer strategies, such as drugs physicochemical modifications or particle size reduction, crystal engineering, salt formation, solid dispersion, use of surfactant and complexation are being exploited. As far as what regards dispersion/complexation techniques, nanoparticles, including dendrimers, are intensely utilized for this purpose, thus in parallel achieving drugs protection from early degradation, more efficient target delivery into cells and tissues and lower systemic toxicity. Synthetic thiocarbamate (O-TC 1) (Fig. 1) is a non-nucleoside HIV-1 reverse transcriptase inhibitor [1] while Ellagic Acid (EA 2) (Fig. 2) is a polyphenol present in some fruits, nuts and seeds endowed with strong antioxidant, anti-inflammatory and other several healthy properties. Unfortunately, both of them are practically insoluble (Table 1), non orally bioavailable, non parenteral administrable, then non usable for therapeutic purposes in their free forms. Fig. 1: Structure of O-TC 1 Fig. 2: Structure of EA 2 Fig. 3: Examples of hydrophilic (left) and amphiphilic (right) dendrimers structure During the last year, these problems have been addressed and successfully resolved by us, and in this communication, the reached promising outcomes have been summarized and the current state of the art provided. Afar from commercially high cytotoxic PAMAM, five non cells-damaging amino acid-modified hydrophilic (3, 4) [2] and amphiphilic (5-7) [3] dendrimers (Fig. 3) have been synthetized and then used as polymer nano-containers to improve 1 and 2 water-solubility. Five (8-12) [4] and two (13, 14) [5] structurally different drugs-loaded nanodispersions (DPXs) were obtained respectively. The structures were confirmed by FT-IR and NMR analysis and all the samples have resulted in being endowed with very good Drug Loading (DL %). Compound 1, totally insoluble except for in highly diluted DMSO when free, once entrapped in dendrimers, shown to be well soluble both in water and in ethanol. In the case of 2, water-solubility was increased even up to 1000 times compared to the free form. For the prerogatives demonstrated in the performed routine analyses, the prepared DPXs could be considered eligible for biomedical and therapeutic applications thus allowing to exploit 1 and 2 pharmacological properties. REFERENCES: 1. A. Spallarossa et al., Eur. J. Med. Chem., 44, 2190 (2009). 2. S. Alfei & S. Catena, Polym. Advan. Technol., 29, 2735 (2018). 3. S. Alfei & S. Catena, Polym. Int., 67, 1572 (2018). 3. S. Alfei et al., Eur. J. Pharm. Sci., 124, 153 (2018). 4. S. Alfei et al., New J. Chem., 2019, DOI: 10.1039/c8nj05657a

    Microdispersions of ellagic acid and pomegranate extracts as new potential nutraceutical ingredients

    Get PDF
    The health properties attributed to several fruits (i.e. pomegranates, raspberries, strawberries, blackberry, chestnuts, walnuts, pecan), herbs (tea) and seeds (berries seeds) are attributed to an important group of natural polyphenols classified as hydrolysable tannins (HT) named Ellagitannins (ETs), that have shown in vitro multi-target biological properties relevant to the treatment of several human diseases. In vivo, ETs are rather not absorbed, and they are hydrolysed providing mainly Ellagic acid (EA). EA is endowed with the same biological properties of ETs and it could be considered as the responsible of their health benefits. Unfortunately, EA cannot be exploited for in vivo applications because of its poor water solubility (9.7 \u3bcg/mL) and accordingly low bioavailability. At first, aiming to increase EA solubility, an EA solid microdispersion (EA-md) was realized by employing only water and low methoxylated pectin, as a food compatible excipient, by applying spray drying technology. EA-md showed a 22% (w/w) Drug Loading (DL), a 30 times improved water solubility maintaining a remarkable radical scavenging activity [1]. It has been analytically characterised and used for in vivo pharmacological treatments in order to evaluate it as potential nutraceutical ingredient. Adult (3-6 months old) and old (20-22 old months) male mice were chronically administered EA-md dissolved in the drinking water (about 150 mg / Kg) for 14 days. During this period, animals were monitored for the spontaneous motor activity and for curiosity before, during and at the end of the EA-md treatment. Adult and old mice were then sacrificed for \u201cex vivo, in vitro\u201d analysis to test the efficiency of noradrenaline release from cortical nerve endings. It is known that noradrenaline exocytosis from cortical nerve endings is significantly impaired during ageing. We found that the chronic administration of EA-md did not alter the noradrenaline exocytosis from cortical nerve endings of adult mice, but significantly recovered the reduced noradrenaline overflow in aged mice. Further investigations are needed to explore the cellular cascade of events accounting for the beneficial effect. In a second step, pomegranate, as a natural source of EA, has been considered to similarly prepare and investigate an analogous formulation. Since pomegranate fruit is recognized as one of the most important sources of ETs, mainly localized in the by-products obtained after industrial juice squeezing, a method to convert the squeezing marcs into a potential nutraceutical ingredient has been explored. In particular, Pulsed Ultrasound-Assisted Extraction (PUAE), using just water as solvent, resulted to be suitable for extracting the water-soluble bioactive molecules (PEx), whose content in hydrolysable tannins, standardized in EA, has been determined. Furthermore, the already mentioned spray drying microdispersion has been employed to formulate and to stabilize it over time. This last formulation (PEx-md) will be subjected to the already mentioned pharmacological experiments in order to study its nutraceutical properties too. [1] S. Alfei, F. Turrini, S. Catena, P. Zunin, B. Parodi, G. Zuccari, A.M. Pittaluga, R. Boggia, New J. Chem, 43, 2438-2448 DOI: 10.1039/C8NJ05657

    Neuroinflammation in Aged Brain: Impact of the Oral Administration of Ellagic Acid Microdispersion

    Get PDF
    The immune system and the central nervous system message each other to preserving central homeostasis. Both systems undergo changes during aging that determine central age-related defects. Ellagic acid (EA) is a natural product which is beneficial in both peripheral and central diseases, including aging. We analyzed the impact of the oral administration of a new oral ellagic acid micro-dispersion (EAm), that largely increased the EA solubility, in young and old mice. Oral EAm did not modify animal weight and behavioral skills in young and old mice, but significantly recovered changes in "ex-vivo, in vitro" parameters in old animals. Cortical noradrenaline exocytosis decreased in aged mice. EAm administration did not modify noradrenaline overflow in young animals, but recovered it in old mice. Furthermore, GFAP staining was increased in the cortex of aged mice, while IBA-1 and CD45 immunopositivities were unchanged when compared to young ones. EAm treatment significantly reduced CD45 signal in both young and old cortical lysates; it diminished GFAP immunopositivity in young mice, but failed to affect IBA-1 expression in both young and old animals. Finally, EAm treatment significantly reduced IL1beta expression in old mice. These results suggest that EAm is beneficial to aging and represents a nutraceutical ingredient for elders

    Presynaptic Release-Regulating mGlu1 Receptors in Central Nervous System

    No full text
    Group I metabotropic glutamate (mGlu) receptors consists of mGlu1 and mGlu5 receptor subtypes. These receptors are widely distributed in the central nervous system (CNS), where they preferentially mediate facilitatory signalling in neurones and glial cells, mainly by favouring phospholipase (PLC) translocation. Based on the literature so far available, group I mGluRs are preferentially expressed at the postsynaptic side of chemical synapsis, where they participate in the progression of the chemical stimulus. Studies, however, have shown the presence of these receptors also at the presynaptic level, where they exert several functions, including the modulation of transmitter exocytosis. Presynaptic Group I mGluRs can be both autoreceptors regulating release of glutamate and heteroreceptors regulating the release of various transmitters, including GABA, dopamine, noradrenaline, and acetylcholine. While the existence of presynaptic release-regulating mGlu5 receptors is largely recognized, the possibility that mGlu1 receptors also are present at this level has been a matter of discussion for a long time. A large body of evidence published in the last decade, however, supports this notion. This review aims at revisiting the data from in vitro studies concerning the existence and the role of release-regulating mGlu1 receptors presynaptically located in nerve terminals isolated from selected regions of the CNS. The functional interaction linking mGlu5 and mGlu1 receptor subtypes at nerve terminals and their relative contributions as modulators of central transmission will also be discussed. We apologize in advance for omission in our coverage of the existing literature

    Nicotinic modulation of glutamate receptor function at nerve terminal level: a fine-tuning of synaptic signals

    Get PDF
    This review focuses on a specific interaction occurring between the nicotinic cholinergic receptors (nAChRs) and the glutamatergic receptors (GluRs) at the nerve endings level. We have employed synaptosomes in superfusion and supplemented and integrated our findings with data obtained using techniques from molecular biology and immuno-cytochemistry, and the assessment of receptor trafficking. In particular, we characterize the following: (1) the direct and unequivocal localization of native \u3b1-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamatergic receptors on specific nerve terminals, (2) their pharmacological characterization and functional co-localization with nAChRs on the same nerve endings, and (3) the existence of synergistic or antagonistic interactions among them. Indeed, in the rat nucleus accumbens (NAc), the function of some AMPA and NMDA receptors present on the dopaminergic and glutamatergic nerve terminals can be regulated negatively or positively in response to a brief activation of nAChRs. This effect occurs rapidly and involves the trafficking of AMPA and NMDA receptors. The event takes place also at very low concentrations of nicotine and involves the activation of several nAChRs subtypes. This dynamic control by cholinergic nicotinic system of glutamatergic NMDA and AMPA receptors might therefore represent an important neuronal presynaptic adaptation associated with nicotine administration. The understanding of the role of these nicotine-induced functional changes might open new and interesting perspectives both in terms of explaining the mechanisms that underlie some of the effects of nicotine addiction and in the development of new drugs for smoking cessation
    corecore